Capturing the polynomial hierarchy by second-order revised Krom logic

نویسندگان

چکیده

We study the expressive power and complexity of second-order revised Krom logic (SO-KROM$^{r}$). On ordered finite structures, we show that its existential fragment $\Sigma^1_1$-KROM$^r$ equals $\Sigma^1_1$-KROM, captures NL. all for $k\geq 1$, $\Sigma^1_{k}$ $\Sigma^1_{k+1}$-KROM$^r$ if $k$ is even, $\Pi^1_{k}$ $\Pi^1_{k+1}$-KROM$^r$ odd. The result gives an alternative to capture polynomial hierarchy. also introduce extended version (SO-EKROM). prove SO-EKROM collapses $\Pi^{1}_{2}$-EKROM $\Pi^1_1$. Both co-NP on structures.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capturing Complexity Classes by Fragments of Second Order Logic

We investigate the expressive power of certain fragments of second-order logic on finite structures. The fragments are second-order Horn logic, second-order Krom logic as well as a symmetric and a deterministic version of the latter. It is shown that all these logics collapse to their existential fragments. In the presence of a successor relation they provide characterizations of polynomial tim...

متن کامل

Soft Linear Logic and the Polynomial Hierarchy

In this paper we argue that Lafont’s system of Soft Linear Logic [3] is expressive enough to characterize any level of the Polynomial Hierarchy. This characterization is obtained using the existing additive connectives and does not require the introduction of new rules to SLL.

متن کامل

Query Order and the Polynomial Hierarchy

Hemaspaandra, Hempel, and Wechsung [HHW] initiated the eld of query order, which studies the ways in which computational power is a ected by the order in which information sources are accessed. The present paper studies, for the rst time, query order as it applies to the levels of the polynomial hierarchy. P denotes the class of languages computable by a polynomial-time machine that is allowed ...

متن کامل

Query Order in the Polynomial Hierarchy

We study query order within the polynomial hierarchy. P C:D denotes the class of languages computable by a polynomial-time machine that is allowed one query to C followed by one query to D HHW]. We prove that the levels of the polynomial hierarchy are order-oblivious: P p j :: p k = P p k :: p j. Yet, we also show that these ordered query classes form new levels in the polynomial hierarchy unle...

متن کامل

Capturing k-ary Existential Second Order Logic with k-ary Inclusion-Exclusion Logic

In this paper we analyze k-ary inclusion-exclusion logic, INEX[k], which is obtained by extending first order logic with k-ary inclusion and exclusion atoms. We show that every formula of INEX[k] can be expressed with a formula of k-ary existential second order logic, ESO[k]. Conversely, every formula of ESO[k] with at most k-ary free relation variables can be expressed with a formula of INEX[k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Logical Methods in Computer Science

سال: 2023

ISSN: ['1860-5974']

DOI: https://doi.org/10.46298/lmcs-19(3:6)2023